The Wisconsin HTS Axisymmetric Mirror research team was able to create and hold a plasma using a magnetic field strength of 17 Tesla through high-temperature superconductor magnets, as Interesting Engineering reported.
The magnet systems were delivered to the University of Wisconsin's Physical Sciences Laboratory in Stoughton, Wisconsin, this year by Commonwealth Fusion Systems. The project operates as a public-private partnership with Realta Fusion, Inc., a UW-Madison spin-off company that contributes funding, according to the lab.
"It's setting a world record in magnetic field strength for magnetically confined plasmas and is equipped with intense heating systems while still being a hands-on experiment for both graduate and undergraduate students," Realta Fusion co-founder and UW-Madison scientist Jay Anderson said, per Interesting Engineering.
The design is based on an old fusion device called the magnetic mirror, which was a leading approach in the field until the 1980s, as the news outlet explained. This time, it's been upgraded with the powerful HTS magnets, which trap energetic plasma in a "magnetic bottle" through advances in superconductor technology.
Glad to see fusion power slowly inching towards viability. Modern superconductors seem like they have a potential to accelerate progress in this field.