this post was submitted on 04 Sep 2024
65 points (90.1% liked)

Ask Lemmy

27049 readers
1782 users here now

A Fediverse community for open-ended, thought provoking questions

Please don't post about US Politics. If you need to do this, try !politicaldiscussion@lemmy.world


Rules: (interactive)


1) Be nice and; have funDoxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them


2) All posts must end with a '?'This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?


3) No spamPlease do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.


4) NSFW is okay, within reasonJust remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com. NSFW comments should be restricted to posts tagged [NSFW].


5) This is not a support community.
It is not a place for 'how do I?', type questions. If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.


Reminder: The terms of service apply here too.

Partnered Communities:

Tech Support

No Stupid Questions

You Should Know

Reddit

Jokes

Ask Ouija


Logo design credit goes to: tubbadu


founded 1 year ago
MODERATORS
 

Obviously there's not a lot of love for OpenAI and other corporate API generative AI here, but how does the community feel about self hosted models? Especially stuff like the Linux Foundation's Open Model Initiative?

I feel like a lot of people just don't know there are Apache/CC-BY-NC licensed "AI" they can run on sane desktops, right now, that are incredible. I'm thinking of the most recent Command-R, specifically. I can run it on one GPU, and it blows expensive API models away, and it's mine to use.

And there are efforts to kill the power cost of inference and training with stuff like matrix-multiplication free models, open source and legally licensed datasets, cheap training... and OpenAI and such want to shut down all of this because it breaks their monopoly, where they can just outspend everyone scaling , stealiing data and destroying the planet. And it's actually a threat to them.

Again, I feel like corporate social media vs fediverse is a good anology, where one is kinda destroying the planet and the other, while still niche, problematic and a WIP, kills a lot of the downsides.

you are viewing a single comment's thread
view the rest of the comments
[–] brucethemoose@lemmy.world 2 points 2 months ago* (last edited 2 months ago) (2 children)

Honestly I am not sold on petals, it leaves so many technical innovations behind and its just not really taking off like it needs to.

IMO a much cooler project is the AI Horde: A swarm of hosts, but no splitting. Already with a boatload of actual users.

And (no offense) but there are much better models to use than ollama llama 8b, and which ones completely depends on how much RAM your Mac has. They get better and better the more you have, all the way out to 192GB. (Where you can squeeze in the very amazing Deepseek Code V2)

[–] fruitycoder@sh.itjust.works 1 points 2 months ago (2 children)

None taken! I'll check out AI Horde!

Is there any objective measured ways or at least subject reviews based metrics for a model on g8ve problem set? I know the white papers tend to include it and sometimes the git repos, but I don't see that info when searching through ollama for example.

I saw you other post about ollama alts and the concurrency mention in one of the projects README sounds promising.

[–] brucethemoose@lemmy.world 2 points 2 months ago* (last edited 2 months ago)

Honestly I would get away from ollama. I don't like it for a number of reasons, including:

Suboptimal quants

suboptimal settings

limited model selection (as opposed to just browsing huggingface)

Sometimes suboptimal performance compared to kobold.cpp, especially if you are quantizing cache, double especially if you are not on a Mac

Frankly a lot of attention squatting/riding off llama.cpp''s development without contributing a ton back.

Rumblings of a closed source project.

I could go on and on, inclding some behavior I just didn't like from the devs, but I think I'll stop, as its really not that bad.

[–] brucethemoose@lemmy.world 2 points 2 months ago

Oh, and as for benchmarks, check the huggingface open llm leaderbard. The new one.

But take it with a LARGE grain of salt. Some models game their scores in different ways.

There are more niche benchmarks floating around, such as RULER for long context performance. Amazon ran a good array of models to test their mistral finetune: https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k

[–] fruitycoder@sh.itjust.works 1 points 2 months ago (1 children)

The splitting is 80% of the cool factor for me. Rather than bog down the one node that can handle those cooler models, and have more contribution opportunities.

I wonder honestly if a petals network could be a target host on horde lol

[–] brucethemoose@lemmy.world 1 points 2 months ago* (last edited 2 months ago) (1 children)

The problem is that splitting models up over a network, even over LAN, is not super efficient. The entire weights need to be run through for every half word.

And the other problem is that petals just can't keep up with the crazy dev pace of the LLM community. Honestly they should dump it and fork or contribute to llama.cpp or exllama, as TBH no one wants to split up LLAMA 2 (or even llama 3) 70B, and be a generation or two behind for a base instruct model instead of a finetune.

Even the horde has very few hosts relative to users, even though hosting a small model on a 6GB GPU would get you lots of karma.

The diffusion community is very different, as the output is one image and even the largest open models are much smaller. Lora usage is also standardized there, while it is not on LLM land.

[–] fruitycoder@sh.itjust.works 1 points 2 months ago* (last edited 2 months ago)

I guess to me be able to serve the 408b model even though I'm on a laptop is just awesome to me.

Also I saw Lora was an option for Petals but I haven't messed with it at all.