this post was submitted on 15 Oct 2024
52 points (86.1% liked)

Cybersecurity

5532 readers
262 users here now

c/cybersecurity is a community centered on the cybersecurity and information security profession. You can come here to discuss news, post something interesting, or just chat with others.

THE RULES

Instance Rules

Community Rules

If you ask someone to hack your "friends" socials you're just going to get banned so don't do that.

Learn about hacking

Hack the Box

Try Hack Me

Pico Capture the flag

Other security-related communities !databreaches@lemmy.zip !netsec@lemmy.world !cybersecurity@lemmy.capebreton.social !securitynews@infosec.pub !netsec@links.hackliberty.org !cybersecurity@infosec.pub !pulse_of_truth@infosec.pub

Notable mention to !cybersecuritymemes@lemmy.world

founded 1 year ago
MODERATORS
 

The research team, led by Wang Chao from Shanghai University, found that D-Wave’s quantum computers can optimize problem-solving in a way that makes it possible to attack encryption methods such as RSA.

Paper: http://cjc.ict.ac.cn/online/onlinepaper/wc-202458160402.pdf

Follow up to https://lemmy.ca/post/30853830

you are viewing a single comment's thread
view the rest of the comments
[–] carpelbridgesyndrome@sh.itjust.works 5 points 1 day ago* (last edited 1 day ago)

The issue here is that Schneier is discussing brute force forward computation of cryptography (IIRC of AES). Quantum computers don't iteratively attack primes by attempting to compute all possible primes. The current conventional computer attacks against RSA also aren't brute force hence why the advised size of an RSA key right now is 4096 bits.

This calculation only holds if there is no faster way than brute force iterating the entire key space.