this post was submitted on 04 Dec 2024
106 points (90.8% liked)
Technology
60260 readers
3350 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It would be amazing if it could have a significant impact on spatial and temporal accuracy of things like rain. I feel like for me the existing weather report is good enough for "it will probably rain tomorrow" but it's really hit-or-miss when you get to hourly resolution. A good model may be able to go so far as to say "it will probably rain between 3-4pm on the east side of town tomorrow, and 2-3pm on the west side"
That's the dream at least. With enough data and a sophisticated enough model it feels like it could be possible.
I'm not convinced you can ever get that resolution. There's a big difference between modeling the broad trends and trying to remove the uncertainty from a process that's inherently probabilistic.
Theoretically with enough data it could predict exactly what is going to happen do we have enough data currently to do that probably not but weather isn’t just completely random we just don’t understand it enough yet
It's an insanely complex, coupled system full of turbulence, so that "theoretically" is doing some heavy lifting. The best models now need to be run on supercomputers, despite scores of scientists and software people constantly trying to find further optimizations for the algorithms. AI isn't going to better discriminate signal from noise when the biggest constraint on the existing S/N ratio is the lack of suffiicient compute resource.
Furthermore, unless the AI does explainability, which it almost certainly doesn't, nobody's going to use its output in life-and-limb-critical applications like first responders, defense, even road gritting.
My argument is that that is not the case.
There are many systems in nature that have randomness fundamentally built in. You can model the broad strokes, but the low level details are inherently unpredictable because random processes are involved at the low level. You can predict the general pattern of airflow over a jet wing, but it's not a lack of input resolution that makes it impossible to project the path of a specific molecule.
That has to do with the forecast's grid size, along with some irreducibly complex and ill-conditioned physics that AI won't help with. The best general-forecast global models now have a 10km grid. Some specialist models go down to about 2km. So, depending on the size of your town, probably not fine-grained enough, though there are also point forecasts that take into account terrain, albedo and other fine-grained features and can be pretty accurate, especially when there are some good observation stations nearby so the forecast models can be continually trained based on actual data.