this post was submitted on 23 Dec 2024
725 points (99.1% liked)

World News

39500 readers
2125 users here now

A community for discussing events around the World

Rules:

Similarly, if you see posts along these lines, do not engage. Report them, block them, and live a happier life than they do. We see too many slapfights that boil down to "Mom! He's bugging me!" and "I'm not touching you!" Going forward, slapfights will result in removed comments and temp bans to cool off.

We ask that the users report any comment or post that violate the rules, to use critical thinking when reading, posting or commenting. Users that post off-topic spam, advocate violence, have multiple comments or posts removed, weaponize reports or violate the code of conduct will be banned.

All posts and comments will be reviewed on a case-by-case basis. This means that some content that violates the rules may be allowed, while other content that does not violate the rules may be removed. The moderators retain the right to remove any content and ban users.


Lemmy World Partners

News !news@lemmy.world

Politics !politics@lemmy.world

World Politics !globalpolitics@lemmy.world


Recommendations

For Firefox users, there is media bias / propaganda / fact check plugin.

https://addons.mozilla.org/en-US/firefox/addon/media-bias-fact-check/

founded 2 years ago
MODERATORS
 

Summary

France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.

The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.

President Macron hailed the launch as a key step for low-carbon energy and energy security.

Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”

you are viewing a single comment's thread
view the rest of the comments
[–] oce@jlai.lu 135 points 2 weeks ago* (last edited 2 weeks ago) (79 children)

For additional context, one of the reason for the delay and cost increase was the absurdly complex design due to French and German companies trying to collaborate on a new design as Germany was turning anti-nuclear, which culminated with Germany deciding to stop nuclear energy after the Fukushima Daiichi event.
Another big reason is the knowledge loss due to almost one generation without any reactor built in between.

[–] mosiacmango@lemm.ee 41 points 2 weeks ago* (last edited 2 weeks ago) (50 children)

Now do Georgia's Vogtle reactors 3 and 4, which came in at 34 billion for 2 x 1200mw plants, 21 billion over the original 14 billion estimate, and took over 14 years to build, 8 years behind schedule.

Im glad these powerplants finally got built. They will help, but nuclear is just not reasonable anymore. Its a slow, expensive tech, especially when we are making such leaps and bonds with solar/battery.

[–] oce@jlai.lu 38 points 2 weeks ago* (last edited 2 weeks ago) (21 children)

Even if wind and solar make huge progress, they will likely never be as efficient regarding raw materials efficiency and land use. Land use is the main contributor to biodiversity loss.

I don't think peremptory opinions about technologies are going to help. We should use what ever technology is the most reasonable and sustainable for each specific location.

[–] Resonosity@lemmy.dbzer0.com 11 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

Something to note about this chart is that ground-mount silicon solar PV isn't considered for sharing land use with activities such as farming in comparison to how onshore wind is (i.e. agrivoltaics).

NREL in the US estimates that there are currently ~10.1 GW of agrivoltaics projects spread across ~62,400 acres (or ~7 m^2 / MW).

Even this being said, I think brownfield or existing structures for new PV is the way of the future for solar PV. There is so much real estate that could be used and has the potential to offset grid demand growth while providing greater reliability for consumers. You'll need the big players to help with industrial loads, but even then, the growth of Virtual Power Plants (VPPs) has the potential to balance loads at the same scale as the big players for the prosumer market.

Edit: I'll also make mention of floatovoltaics, or the installation of solar PV on bodies of water, either natural or artificial. This is a burgeoning side of the industry, but this is another area that could present net zero or even negative land use per unit of energy.

[–] Knock_Knock_Lemmy_In@lemmy.world 3 points 2 weeks ago (1 children)
[–] Resonosity@lemmy.dbzer0.com 2 points 2 weeks ago (1 children)

Something to note about your link to solar fences is that one of the cons mentioned is that panels can't produce power for half of the day because they'll be facing away from the sun.

Bifacial panels exist and can collect energy from both faces of the module. We in the utility-scale space use these all the time. You'd want these over monofacial panels for fence applications

[–] Knock_Knock_Lemmy_In@lemmy.world 1 points 2 weeks ago (1 children)

Yes. Bifacial seems like the obvious choice. And the fence should be NS orientation not EW.

[–] Resonosity@lemmy.dbzer0.com 2 points 2 weeks ago (1 children)

If you're trying to maximize energy collection then yes you'll want to face the fence rows NS.

But there are also some benefits for making use of vertical bifacial panels oriented EW. You get a bimodal energy plot: one in the morning and one in the evening when the sun's direct rays shine near horizontal (something NS panels can't collect).

I'd actually be interested in reading the literature on mixing these types of panel orientations to see what the resulting production yields would look like, and if stakeholders like utilities would find any benefit in them to help better manage grid demand in those peripheral times of the day.

I'd actually be interested in reading the literature on mixing these types of panel orientations to see what the resulting production yields would look like.

Solar fencing produces 3% more yield and 30% more revenue than rooftop.

load more comments (19 replies)
load more comments (47 replies)
load more comments (75 replies)