this post was submitted on 20 Jan 2025
138 points (98.6% liked)
Asklemmy
44428 readers
2036 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That's not exactly true. In this case, the energy transmission would go like this: (change of electric field in the little bit of wire next to the power source) -> (change of magnetic field in the air between the wires) -> (change of electric field in the wire next to the load). This limits the amount of energy transmitted significantly and incurs a lot of losses, meaning if you had something like a lamp plugged in it would start glowing extremely dimly at first (think about how some cheap LED lights keep glowing even with the switch off - it's similar, albeit it happens due to inter-wire capacitance and not induction). It would then slowly ramp up to full power over a course of a year.
Here's a video from the same person about it: https://www.youtube.com/watch?v=2Vrhk5OjBP8 (although I haven't watched this yet)
Edit: after watching the video, I think I was actually wrong in a couple of my assumptions. First of all, it looks like the reason for the initial energy transmission is wire capacitance and not induction, so (electric field in wire) -> (electric field in air) -> (electric field in wire, in the "opposite direction", but because the wire goes back and forth it's the same current direction). This means that my LED example is even more potent. And the second one is that because it's capacitance and not induction, this means that there's no slow ramp-up, it just makes the light glow very dimly all the way until the electric field makes it through the wire, and then it ramps up very quickly.