Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try !politicaldiscussion@lemmy.world
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
What goes up comes back down.
Apply math and the object flies in a parabolic arc (not accounting for air friction and wind)
Launch it high enough and the arc start looking elliptical. Gravitational force looks less like a constant rather is tempered by distance². If the acceleration closes the ellipse without hitting the (circular at this scale) ground, your object is now a satellite in orbit.
Keep accelerating and eventually (a whole lot of acceleration) and special relativity factors affect the trajectory...and mass...and time dilates between the object and observers.
Wasn't that rather a reference to the normal / gaussian distribution, that describes many phenomena so well?
I always thought the phrase was Aristotlean but it seems the internet asserts recent or unknown origins.