this post was submitted on 07 Jan 2025
315 points (97.3% liked)
Technology
60316 readers
3332 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I don't think that's true? There are cold weather models that can work at COPs > 1.5 at -30C. Are we talking about a sizing constraint for the model here, perhaps?
There are, but then I think you'd have problems with the effective rang of the AC in the summer. To my knowledge this is all about at what temperature the coolant is a liquid and when it's a gas (because that's how you exchange heat).
A traditional AC only needs coolant that does this at summer temperatures. A heat pump tries to use one that will work at colder temperatures as well. A cold weather heat pump goes even further but I think there is a sacrifice in AC efficiency in the summer.
Somone please correct me if I'm wrong. But I'm not sure if a do-it-all extreme cold and extreme hot heat pump exists, and as a car manufacturer you want to put in the one that will fit most cases, as opposed to a house which only needs to operate in the range of the climate it is built in.
It would make sense if the two stage heat pumps use different liquids in the different stages. I don't actually know how these are made, so I can't assert that this is how it works, but I would be surprised if it worked any other way.