Maybe it desintegrated and thus vanished from the consecutive frame?
Atomic blasts are kind of powerful versus an iron lid.
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
This is a science community. We use the Dawkins definition of meme.
Maybe it desintegrated and thus vanished from the consecutive frame?
Atomic blasts are kind of powerful versus an iron lid.
Man. I haven't seen an ifunny logo in so long. Are people still on it?
Fact check , some of those comparisons were wrong. https://chatgpt.com/share/674ffea4-35e8-800a-8e9a-555180b4c18c
Don't use gpt to fact check.
RIP jpgd to death
ifunny.c😀
The calculation of its speed was made by high speed camera, as you've probably seen the Mythbusters do. In this case the manhole cover was seen in flight in precisely one frame of high speed camera footage, and for it to go "installed, in flight, gone" in three frames means it would have had to be moving at mach jesus.
It likely didn't make it to space intact; it would have had ultrasonic compression heating on one side and a nuclear explosion on the other. It's probably still here in the form of iron oxide dust scattered about the Northwestern hemisphere.
In my head I know you're right but my heart wants this.
If we kill him he never will have said it and the manhole cover will be in space.
I like the energy.
As much energy to put a manhole in space?
You'll have to kill Kyle Hill too.
That I'd do for free.
I'd like to think that it's possible that it was launched fast enough that it escaped the blast and Earth's atmosphere and made its way to a neighboring galaxy where it's now living lodged in some far off asteroid or some comet or planet.
Manhole cover first man made object in Andromeda.
It's not going fast enough to escape the Milky Way Galaxy.
This was in what? the 50's? So it would have had to travel ~2 million light years in 70 years, so it would have had to hit several hundred thousand times the speed of light?
The Parker Solar Probe moves 120 miles per second as it passes around the Sun. That's nearly half a million miles per hour!
Parker Solar Probe: 191 km per second.
Nuclear Manhole Cover: 55 km per second
Voyager 1: 17 km per second
Voyager 2: 15 km per second
Nope, it would just have bursted due to thermal schock and pressure. Escape velocity, what are you dreaming, is the lid made of tungsten?
This is the origin apparently.
RRB: "My calculations are irrelevant on this point. They are only valid in speaking of the shock reflection." Ogle: "How fast did it go?" RRB: "Those numbers are meaningless. I have only a vacuum above the cap. No air, no gravity, no real material strengths in the iron cap. Effectively the cap is just loose, traveling through meaningless space." Ogle: And how fast is it going?" This last question was more of a shout. Bill liked to have a direct answer to each one of his questions. RRB: "Six times the escape velocity from the earth."
How to solve the Three Body Problem.
Ummm, not sure where they got these numbers from but Earth's escape velocity is not 7000mph and escaping the sun's gravitational pull (leaving the solar system from Earth) is not 30,000mph. Respectively the numbers are approximately 25,000mph and 94,000mph. You're welcome.
That's 11.2 km/s and 42.1 km/s.
Also, even if the manhole cover was going at above 12 km/s the trajectory has to be right for that to result in orbit. Most paths it would take would result in it going up and then coming back down again. Similarly, if somehow it did manage more than 50 km/s and wasn't destroyed in the atmosphere, it might have the velocity to escape the sun's gravity, but probably wouldn't be on the right path to do it. Most likely it would fall into the sun.
So, assuming the 125,000 mph (55 km/s) velocity is correct, the most likely outcome is that it was a reverse-meteor, something that burned up going up through the atmosphere, not down. And even if it did have enough speed to get out of the atmosphere, and there was enough of it left, it most likely fell right back down through the atmosphere somewhere else, either burning up on re-entry or hitting the ground (or the water) somewhere else.
Ignoring that it burned up and ignoring losses due to drag if it somehow didn't. Isn't the point of escape velocity that it explicitly won't come back down.iar least not on earth. Your trajectory won't matter as you have enough velocity to escape the gravity of earth and will orbit the sun. Further if you managed the solar system escape velocity you will end up orbiting the galactic core. Trajectory doesn't matter if you have escape velocity. Correct trajectory just minimizes the delta v needed to reach that escape velocity.
At least that's all my recollection.
Escape velocity means you could stay in orbit. It doesn't guarantee anything if you launch at the wrong angle.